

Overview of Position Accuracy Studies

For Use by ASSAP WG

Randy Sleight November 7, 2006

Applied Physics Laboratory

Outline

1. Position Error Results from:

- <u>1090ES LDPU</u> March 2005 Flight Tests over Louisville, KY
- <u>UAT GDL-90</u> Cumulative results from various flight tests, including Anchorage 11/2004, Juneau 10/2004, Atlantic City 8/2004, and 10/2005.

2. Studies of typical equipage:

- 1090ES in Louisville
- UAT in the East Coast

This brief is meant to be an overview of the available ADS-B data. It is not meant to be a comprehensive assessment of all ADS-B equipages in all environments.

1090ES LDPU Overview

- Flight Tests were conducted at Louisville Standiford Airport
 - March 9, 2005
- N39 Convair 580 Aircraft
 - 1090ES avionics
- Data sources
 - Ashtech data recorders (500 ms updates)
 - Avionics Ownship
 - Extracted from LDPU Flash Drive on LDPU Avionics
 - Data set includes either GPS or FMC (Flight management computer) position data along with altitude encoder data archived as they are received onboard by the LDPU.
 - Avionics 1090 Rx Ownship
 - Extracted from 1090Rx Flash Drive on LDPU Avionics (separate drive from above)
 - Message generation logic used to combine position and velocity messages
 - TOA is calculated (by JHU) as per 1090 MOPS (non-precision = t_Rx 0.1 sec)
 - These messages are archived after the Ownship positions have traversed the Transmit and Receive subsystems.
- Ashtech times were interpolated to ADS-B TOA
- Great circle distances between ADS-B and Ashtech lat/long positions were calculated and plotted versus time

ADS-B Distance Error vs. Time

ADS-B To ASHTECH Position Error (feet)

Reported integrity and accuracy (100% NUCp = 7)

1090 Rx Ownship Distance Error Distribution

UAT Position Accuracy Overview

- Test aircraft:
 - FAA N39 and N49,
 - University of Alaska (UAA) (Juneau only)
- Data sources
 - CARTS EX data class
 - JHU/APL CRABS archives
 - MEARTS EX data class
- Ashtech times were interpolated to ADS-B TOA
- Great circle distances between ADS-B and Ashtech lat/long positions were calculated and plotted versus time

WAT ADS-B Sensor Reported Position Accuracy @ TOA - Error Distribution for All Flight Tests

^{*}Two values are not shown above: 471 ft. and 415 ft. Both occurred at the same time on different aircraft, and reported NIC =9 and NACp=9.

^{*}NACp<4 and NIC<4 were removed from statistics.

UAT NIC and NACp Values for all Flight Tests

NIC Table (count=43756)		
Val	Count	Percentage
О	1232	2.82 %
1	0	о %
2	О	о %
3	0	o %
4	1	<0.01 %
5	1	<0.01 %
6	10	0.02 %
7	23	0.05 %
8	6802	15.55 %
9	11368	25.98 %
10	24319	55.58 %

NACp Table (count=43756)		
Val	Count	Percentage
О	982	2.24 %
1	0	o %
2	О	о%
3	0	о%
4	О	о%
5	0	o %
6	0	o %
7	6	0.01 %
8	840	1.92 %
9	41928	95.82 %
10	0	o %

^{*}Airborne reports (speed >35 knots) only transmitted NIC>=8 and NACp>=8 (except for 6 NACp=o reports).

Selected Slides from an older brief: Some Issues Observed in Operational ADS-B Datalinks

Michael Castle Andrew Ford Stephen Giguere Randy Sleight

November 9, 2005

Applied Physics Laboratory

Notes on Analysis of Current Datalink Implementations

- Remainder of briefing provides examples of incorrect / insufficient / anomalous data reported from ground receivers
- Arbitrarily picked the week of September 1-7, 2005 to examine:
 - 1090ES data for aircraft near Louisville
 - UAT data for aircraft on East Coast of CONUS
- Current 1090ES datalink installations (for the most part) predate TSO C-166
- UAT installations are compliant with TSO C-154

The Problem of Isolating Faults

- ADS-B is a distributed system faults can occur in and in between each piece of equipment, or by human inaction
- The data collected here is Reports issued from a ground receiver

 no definitive answer on what is "wrong" when anomalies
 occur

Aircraft Based ADS-B Transmit System

Reported NUC_P Values (and inferred R_c) for Louisville from 9/1 through 9/7

Position Anomalies in Current 1090ES Data

- Quick sanity check on reported position in received 1090ES messages from Louisville
- Applied a filter that looked at reported positions outside of a simple box inscribing a 300 NM range from SDF

Position Anomalies in Current 1090ES Data (2)

Looking at all received data from 0:00 Zulu on September 1, 2005 through 23:59 Zulu on September 7, 2005:

- 399 Unique ICAO Addresses
- 81 Unique ICAO Addresses that had at least one position reported "outside the box" (about 20%)
 - Of these 81aircraft, on average, 65% of the reports out of the GBT from these aircraft had a position "outside the box"
- Approximately 3 million ADS-B reports issued from 1090ES GBT in Louisville
- Approx. 115,000 ADS-B reports that reported position "outside the box" (about 4%)

Position Anomalies in "Worst Offender"

- One aircraft had "Nothing but Bad" position data. Taking a closer look at this aircraft:
 - 709 reports issued from GBT on September 1,2005
 - Longitude was set to -90 degrees for all reports
 - Latitude, altitude, & velocity were set to o degrees for all reports
 - NUCp was set to 7 for all reports
 - Indicates a < 0.1 NM integrity alerting error at 10⁻⁵ per flight hour & 95% Accuracy < 0.05 NM
 - No call sign reported

Other Anomalous Behavior in ADS-B Reports from SDF during Sept. 1-7, 2005

Recall that there were 399 unique aircraft observed during this week

- Pressure Altitude
 - 57 unique aircraft reported altitudes ≤ -1000 ft. or altitudes ≥ 45,000 ft.
- Identification
 - 16 unique aircraft reported no Call Sign (~70,000 reports)
 - 163 aircraft reported 100% consistent call signs
 - 214 Reports from obviously invalid ICAO Address
 - How do you verify a bad ICAO?
 - Related to another issue 217 Reports failed CRC test due to bit shifting unclear what is the source of error
- Velocity
 - 372 aircraft were reported to have Zero (o) Velocity when greater than 1000 ft. pressure altitude for at least one report
 - 15% of Reports issued for this week (462,000 reports)
 - 40 aircraft never reported velocity (out of an average 1700 reports)
 - 12 aircraft showed a speed > 200 knots when 1500 ft. or lower mostly due to altitude getting zeroed out

UAT Data on East Coast Deployment

- ADS-B data from the East Coast network archive were analyzed to identify anomalous UAT performance
 - September 1 through September 7, 2005
- 6,756,675 UAT Reports were processed
- 112 unique ICAO 24-bit Addresses were observed
 - 110 appeared to be valid aircraft reports
 - "o" Address commonly observed at avionics start-up –
 Likely a GBT Issue

Observed Broadcast UAT Data Anomalies

Pressure Altitude

- ~4% (241,828) of all UAT Reports did not contain pressure altitude
- Two aircraft never reported a pressure altitude
- Many other aircraft had intermittent pressure altitudes
- Others took a long time before first report of Pressure Altitude
 - Need pilot to activate the pressure encoder?

Invalid Air Ground Determination

- Five aircraft appear to always report an airborne state whether on the surface or airborne
- This conservative approach is not in conflict with MOPS
- Rapid Transitions in Integrity (NIC \rightarrow 0)

THOP KING UNIVERSITY OF THE PROPERTY OF THE PR

Initialization of ADS-B Data Quantities after 1st Message Received at GBT (9/1-9/7)

Aircraft NIC Values (9/1-9/7)

UAT Integrity Issues

- Integrity is intended to be a slowly varying parameter
 - NIC will be applied as a criterion for enabling most applications
- UAT reports with zero NIC values are observed during flight, indicating unknown position integrity
- JHU/APL has analyzed the frequency and duration of the zero NIC events for the East Coast Network

Daily Frequency of NIC 0

Statistics for NIC 0 Events

- 136 days in the data from last slide
- 134 unique aircraft observed
- Number of NIC o events observed:
 - Excluding helicopters: 120 in 23417 flight hours
 - Including helicopters: 163 in 25266 flight hours
- Events per flight hour
 - Excluding helicopters: 3.3 x 10⁻⁵
 - Including helicopters: 4.3 x 10⁻⁵
- 0.88 Events per day (excluding helicopters)

More Characterization

- Duration Histogram
 - Peaks at 3 seconds
 - 90% below 10 seconds
- Events by A/C Histogram
 - 29% of A/C account for 90% of events

*Includes only airborne

A/C

What is the Cause?

The problem has been looked at from various perspectives to identify trends:

- Frequency within fleets / types of aircraft
 - ERAU Prescott and Daytona Beach, East Coast, Helicopters
- State Vector Trends (before and after event)
 - Δ Hdg, Δ Vel, Δ Alt
- Time of Day (events per hour)
- Events per flight hour

Data surrounding the events were plotted and organized into a web site to distribute within the analysis community.

- The track plots suggest that there may be a correlation with high rate maneuvers
- Currently investigating the frequency of high rate maneuvers resulting in NIC o events

Rapid Descents

• ERAU Prescott has many NIC o transitions that appear to be a result of rapid descent aerobatic maneuvers

 Aircraft may experience similar orientations during stall recovery training

Steep Turns

- NIC o transitions are frequently observed to occur during turning flight
 - 10-20 degree per second turns
- High bank angles may shield the GPS antenna from satellite view
 - ERU practices turns involving up to 55° bank angles

